植入陶瓷吧,开拓生物材料发展新途径

让生物陶瓷“活”起来

新型组织诱导性生物材料:骨折不怕,植入陶瓷吧

在人体内植入无生命的人工材料,就能诱导生命组织器官再生,调动人体自身修复功能。这种看似只能出现在科幻电影里的场景,因为有了组织诱导性生物材料,并非遥不可及。不久前,在长春举行的中国科协年会先进材料展上,中国工程院院士、四川大学教授张兴栋展示了一种骨诱导性人工骨生物材料,将它植入人体后,就能调动人体自身的康复功能,形成新的组织,既无异物反应,又可实现人体的永久性康复。

其他 1

本报记者 喻思娈《 人民日报 》( 2017年07月04日 12 版)

据介绍,这种人工骨生物材料就是多孔磷酸钙生物陶瓷,是组织诱导性生物材料的一种。经过多年研究,张兴栋发现,多孔磷酸钙生物陶瓷不仅具有良好的生物相容性,在一定条件下还表现出骨诱导性,即不用外加生长因子或活体细胞就可以诱导骨组织生成,在治疗骨缺损方面有很好的应用前景。“植入人体内过一段时间,陶瓷中会形成新骨头,陶瓷本身会慢慢消失,最终转变为人骨。”生物陶瓷可诱导骨组织生成,开拓生物材料发展新途径

生物陶瓷在软组织组织工程和再生医学领域有巨大的发展潜力。图片来源:百度图片

在人体内植入无生命的人工材料,就能诱导生命组织器官再生,调动人体自身修复功能。这种看似只能出现在科幻电影里的场景,因为有了组织诱导性生物材料,并非遥不可及。不久前,在长春举行的中国科协年会先进材料展上,中国工程院院士、四川大学教授张兴栋展示了一种骨诱导性人工骨生物材料,将它植入人体后,就能调动人体自身的康复功能,形成新的组织,既无异物反应,又可实现人体的永久性康复。

传统观念认为,无生命的生物材料不可能诱导组织器官再生或形成,因此治疗骨缺损时,医生通常向断骨处植入金属、高分子等材料,这些材料的腐蚀、排异特性给患者带来很大的痛苦。

■本报记者 李惠钰

生物陶瓷可诱导骨组织生成,开拓生物材料发展新途径

张兴栋和他的团队上世纪80年代在国内率先研发出生物活性陶瓷及涂层等。上世纪90年代,他又首创迄今国际唯一的骨诱导人工骨并应用于临床。在此基础上,他提出了“组织诱导性生物材料”这一颠覆性概念。这一概念赋予材料诱导组织形成或再生的生物功能,开拓了生物材料发展的新途径。

生物陶瓷可以是硬邦邦的陶瓷牙冠,也可以成为融入机体的“活”的材料。

据介绍,这种人工骨生物材料就是多孔磷酸钙生物陶瓷,是组织诱导性生物材料的一种。经过多年研究,张兴栋发现,多孔磷酸钙生物陶瓷不仅具有良好的生物相容性,在一定条件下还表现出骨诱导性,即不用外加生长因子或活体细胞就可以诱导骨组织生成,在治疗骨缺损方面有很好的应用前景。“植入人体内过一段时间,陶瓷中会形成新骨头,陶瓷本身会慢慢消失,最终转变为人骨。”

体外培养组织技术由于缺乏人体神经和体液系统的控制,应用中可能出现风险。可诱导组织再生的材料的优势在于,调动人体自身力量,在机体环境下再生,并降解转化成为身体一部分,不会留下异物,修复效果更好。

不久前,中科院上海硅酸盐研究所研究员常江在国际学术期刊Materials
Today发表综述文章,总结了近年来生物陶瓷的研发进展。他表示生物陶瓷不仅能用于硬组织修复,在软组织组织工程和再生医学领域也有巨大的发展潜力。

传统观念认为,无生命的生物材料不可能诱导组织器官再生或形成,因此治疗骨缺损时,医生通常向断骨处植入金属、高分子等材料,这些材料的腐蚀、排异特性给患者带来很大的痛苦。

张兴栋团队研发的骨诱导性人工骨生物材料,是目前全球首个硬组织诱导性生物材料产品,自2013年临床应用至今已逾数万例,疗效良好。此外,他的人工关节的羟基磷灰石涂层技术成果也具有世界先进水平,临床应用近10万例。目前以骨诱导人工骨为代表的一批产品已获得医疗器械注册证,第二代可承力骨诱导人工骨、胶原水凝胶软骨诱导材料等多个产品已完成实验室研发。

越来越多的证据表明,生物陶瓷具有调节干细胞分化和干细胞与组织特异性细胞相互作用的生物活性。“调控血管的生长、促进脂肪的再生、修复受损的皮肤或其他软组织创伤等,都将是生物陶瓷很有前景的应用方向。”常江对《中国科学报》记者说。

张兴栋和他的团队上世纪80年代在国内率先研发出生物活性陶瓷及涂层等。上世纪90年代,他又首创迄今国际唯一的骨诱导人工骨并应用于临床。在此基础上,他提出了“组织诱导性生物材料”这一颠覆性概念。这一概念赋予材料诱导组织形成或再生的生物功能,开拓了生物材料发展的新途径。

拥有更强拉伸力的可再生人工韧带,有很大的临床应用价值

从“无生命”到“有生命”

体外培养组织技术由于缺乏人体神经和体液系统的控制,应用中可能出现风险。可诱导组织再生的材料的优势在于,调动人体自身力量,在机体环境下再生,并降解转化成为身体一部分,不会留下异物,修复效果更好。

除了治疗骨缺损,可诱导组织再生的理论还成功应用于再生韧带和中枢神经等软组织上。材料展上,上海松力生物技术公司展出了由他们研发、世界上首个有组织诱导功能的生物人工韧带,部分性能超越了国际上最先进的人工韧带。

在人体内植入无生命的人工材料,就能诱导生命组织器官再生,调动人体自身修复功能。这种看似遥不可及的场景,因为生物陶瓷活性的增强,进一步变为现实。

张兴栋团队研发的骨诱导性人工骨生物材料,是目前全球首个硬组织诱导性生物材料产品,自2013年临床应用至今已逾数万例,疗效良好。此外,他的人工关节的羟基磷灰石涂层技术成果也具有世界先进水平,临床应用近10万例。目前以骨诱导人工骨为代表的一批产品已获得医疗器械注册证,第二代可承力骨诱导人工骨、胶原水凝胶软骨诱导材料等多个产品已完成实验室研发。

跑步等日常活动都有可能造成韧带损伤,尤其是膝关节的前交叉韧带,一旦损伤就需要手术进行修复。“我们研发的人工韧带是用松力纤维蛋白原和可吸收材料为原料共混后,采用静电纺技术制备的具有超亲水性的、类似细胞外基质的生物复合支架材料,是一种软组织诱导性生物材料。”松力生物董事长何红兵说,该材料植入机体后,在逐层降解的同时进行组织再生,诱导机体自身组织长入韧带中,逐渐演变成自身韧带组织。

中国工程院院士、四川大学教授张兴栋就曾向记者展示了一种骨诱导性人工骨生物材料,将它植入人体后,能调动人体自身的康复功能,形成新的组织,既无异物反应,又可实现人体的永久性康复。

拥有更强拉伸力的可再生人工韧带,有很大的临床应用价值

据介绍,以法国LARS韧带为代表的合成材料人工韧带,成分是聚酯材料,不可吸收、也不能再生。同时产品使用寿命有限,时间长了韧带可能松弛、断裂。“可再生生物材料制成的人工韧带,可吸收和再生,静电纺技术工艺比较简单,在疗效及安全性更好的同时,还能降低成本。”

这种人工骨生物材料就是多孔磷酸钙生物陶瓷,是组织诱导性生物材料的一种。经过多年研究,张兴栋发现,多孔磷酸钙生物陶瓷不仅具有良好的生物相容性,在一定条件下还表现出骨诱导性,即不用外加生长因子或活体细胞就可以诱导骨组织生成。

除了治疗骨缺损,可诱导组织再生的理论还成功应用于再生韧带和中枢神经等软组织上。材料展上,上海松力生物技术公司展出了由他们研发、世界上首个有组织诱导功能的生物人工韧带,部分性能超越了国际上最先进的人工韧带。

何红兵说,通常,人体膝关节需要承受1500千克至2000千克的拉伸力,可吸收的韧带植入后要逐步降解、吸收、再生,初始的强度通常要达到承受力的2—3倍,才能保证该材料的正常使用。目前,松力生物制备的人工韧带已突破了这一技术瓶颈,达到4000千克的拉伸力。

“骨修复采用自体骨是最好的,但是自体骨来源有限,所以如果能够做出与自体骨很接近的材料,那就太理想了。”清华大学再生医学与仿生材料研究所所长崔福斋也一直致力于生物陶瓷的研究。他告诉《中国科学报》记者,他们实验室就以胶原蛋白和羟基磷灰石为原料做出生物陶瓷人工骨,植入人体后能够像自体骨一样在体内转化,促进骨细胞生长,形成新的组织,而陶瓷本身则会逐渐降解消失。

跑步等日常活动都有可能造成韧带损伤,尤其是膝关节的前交叉韧带,一旦损伤就需要手术进行修复。“我们研发的人工韧带是用松力纤维蛋白原和可吸收材料为原料共混后,采用静电纺技术制备的具有超亲水性的、类似细胞外基质的生物复合支架材料,是一种软组织诱导性生物材料。”松力生物董事长何红兵说,该材料植入机体后,在逐层降解的同时进行组织再生,诱导机体自身组织长入韧带中,逐渐演变成自身韧带组织。

目前,上海松力生物技术公司的人工韧带已经在大动物山羊上实验并成功。“山羊的抗张强度和人体比较接近,对未来应用到人体很有参考价值。”何红兵说,公司接下来会跟骨科专家合作,研发符合骨科实际要求的产品。

“骨修复材料如果在体内不能够降解,那它就永远是个异物。”崔福斋说,如何提高生物陶瓷的生物活性是当下的研究热点,比如在陶瓷中加入生长因子或干细胞等。常江也表示,生物陶瓷释放的不同的生物活性离子,对干细胞微环境和组织再生具有组合或协同作用,这将有助于设计具有多种组织修复功能的生物陶瓷。

据介绍,以法国LARS韧带为代表的合成材料人工韧带,成分是聚酯材料,不可吸收、也不能再生。同时产品使用寿命有限,时间长了韧带可能松弛、断裂。“可再生生物材料制成的人工韧带,可吸收和再生,静电纺技术工艺比较简单,在疗效及安全性更好的同时,还能降低成本。”

“韧带重建存在的一大问题是缺乏合适的人工韧带,因此临床上主要采用自体韧带。但取自体是拆东墙补西墙,就是抽自己的筋来补自己的韧带,这样会造成新的创伤,还会削弱自身组织,因此可再生的人工韧带在临床有很大的应用价值。”上海交通大学附属第六人民医院运动医学科主任赵金忠说。

“生物陶瓷不只用做简单地物理替换,从再生医学的角度,大家更关注生物陶瓷产生的生物学效应,即这个材料本身可能会直接影响细胞,影响人体组织的再生,这将发生本质的变化。”常江表示,生物陶瓷研究的国际趋势就是,不单要增强它的生物活性,还需要发掘它的新的生物功能,拓展新的应用。

何红兵说,通常,人体膝关节需要承受1500千克至2000千克的拉伸力,可吸收的韧带植入后要逐步降解、吸收、再生,初始的强度通常要达到承受力的2—3倍,才能保证该材料的正常使用。目前,松力生物制备的人工韧带已突破了这一技术瓶颈,达到4000千克的拉伸力。

作为一种平台型技术,该软组织诱导性生物材料除了可制成韧带外,还可以制成各种软组织替代物,以及系列组织修复材料,包括心脏补片、腹膜补片、膀胱补片、脑膜补片、骨科填充材料、人工血管等。未来,更多患者可能受惠于可诱导组织再生材料的发展。

从“硬组织”到“软组织”

目前,上海松力生物技术公司的人工韧带已经在大动物山羊上实验并成功。“山羊的抗张强度和人体比较接近,对未来应用到人体很有参考价值。”何红兵说,公司接下来会跟骨科专家合作,研发符合骨科实际要求的产品。

可诱导组织再生材料研究方兴未艾,是未来生物材料发展的重要方向

常江认为,近几年,生物陶瓷最大的科研进展之一就是从硬组织的替代应用拓展到了软组织的再生修复,软组织修复也将是生物陶瓷一个非常有前景的重大方向。

“韧带重建存在的一大问题是缺乏合适的人工韧带,因此临床上主要采用自体韧带。但取自体是拆东墙补西墙,就是抽自己的筋来补自己的韧带,这样会造成新的创伤,还会削弱自身组织,因此可再生的人工韧带在临床有很大的应用价值。”上海交通大学附属第六人民医院运动医学科主任赵金忠说。

“以可诱导组织再生材料为核心的新一代生物材料,已成为生物材料发展的方向和前沿,将在未来10年至20年成为生物材料产业主体,应通过产学研协同创新,抢占制高点。”张兴栋说。

“绝大多数生物陶瓷都是用于骨和牙齿等硬组织修复,但现在通过生物学效应发现,生物陶瓷还能够调控细胞,很好地促进创伤愈合,也可以促进其它一些软组织,包括心肌、皮肤、脂肪的再生,还能够促进干细胞分化,用于各种不同的软组织修复。”常江说,“因为很多软组织创伤的修复都需要血管的生长,如果生物陶瓷材料能够促进血管的再生,就可以修复更多的软组织创伤。”

其他,作为一种平台型技术,该软组织诱导性生物材料除了可制成韧带外,还可以制成各种软组织替代物,以及系列组织修复材料,包括心脏补片、腹膜补片、膀胱补片、脑膜补片、骨科填充材料、人工血管等。未来,更多患者可能受惠于可诱导组织再生材料的发展。

在何红兵看来,目前我国在再生生物材料领域已走在世界前列。2016年5月,张兴栋当选国际生物材料科学与工程学会联合会主席一职,这是该联合会成立以来,首次由我国科学家担任。“这表明我们原创性的发现已获国内外认可,中国生物材料科学与工程不仅成功登上了世界舞台,而且进入了舞台的中央。”张兴栋说。由于未来前景大好,可诱导组织再生的新一代生物材料已被列为国家“十三五”重点专项“生物材料研发与组织器官修复替代”的重点和核心。

另外,“从临床适应症的角度,有成千上万不同的应用模式,不同的组织所需要的材料千差万别,不同的细胞对材料的活性要求也不一样,修复骨头和修复心肌、皮肤或者肝脏,都有不同的要求。”常江告诉记者,他们为此建立了一个材料库,以生物活性为核心做出各种不同组成的材料,针对不同的临床应用,筛选最合适某种细胞的活性材料,然后把它做成临床应用最需要的形式。

可诱导组织再生材料研究方兴未艾,是未来生物材料发展的重要方向

生物材料应用市场也很广阔,涵盖了齿科、血管支架、骨科、创伤修复等多领域,市场规模非常大。何红兵说,传统组织工程材料不可降解,基本会以异物存在于体内,且存在活性欠佳,可能与人体有排斥反应,有时甚至在治好一种疾病的同时又产生了新的疾患,“所以,可诱导组织再生材料是未来生物材料发展的重要方向。”

从原材料的角度,用于组织再生的生物陶瓷除了磷酸盐陶瓷,如羟基磷灰石、磷酸三钙及多聚磷酸钙,还有多种硅酸盐陶瓷以及碳酸钙、硫酸钙等。常江表示,从修复硬组织拓展到软组织,很多时候需要采用有软有硬的复合材料。“有的需要做成创可贴一样的膜,有的需要做成一个管子,比如修复神经或者修复血管等,如果是局部的修复,可能还需要做成像水凝胶、果冻一样的材料,直接用针注射到需要修复的地方。”

“以可诱导组织再生材料为核心的新一代生物材料,已成为生物材料发展的方向和前沿,将在未来10年至20年成为生物材料产业主体,应通过产学研协同创新,抢占制高点。”张兴栋说。

对于未来,何红兵有着清醒的认识和规划:“总体上我国生物医学材料,尤其是高端产品生产能力与国际先进水平还存在不小差距,希望我们能跨越式地建成新一代生物材料产业体系,摆脱落后局面。”

常江还表示,未来,生物陶瓷研究需要实现控制材料各种参数的精准化,比如材料的结构、化学组成、力学特性等,这是决定材料生物学效应的关键。“要想实现这些,光靠一种方法可能不够,还需要多种方法的组合,或者研发更适应某些材料的特种制备技术,比如3D打印就是重点方向之一。”

在何红兵看来,目前我国在再生生物材料领域已走在世界前列。2016年5月,张兴栋当选国际生物材料科学与工程学会联合会主席一职,这是该联合会成立以来,首次由我国科学家担任。“这表明我们原创性的发现已获国内外认可,中国生物材料科学与工程不仅成功登上了世界舞台,而且进入了舞台的中央。”张兴栋说。由于未来前景大好,可诱导组织再生的新一代生物材料已被列为国家“十三五”重点专项“生物材料研发与组织器官修复替代”的重点和核心。

从“单学科”到“多学科”

生物材料应用市场也很广阔,涵盖了齿科、血管支架、骨科、创伤修复等多领域,市场规模非常大。何红兵说,传统组织工程材料不可降解,基本会以异物存在于体内,且存在活性欠佳,可能与人体有排斥反应,有时甚至在治好一种疾病的同时又产生了新的疾患,“所以,可诱导组织再生材料是未来生物材料发展的重要方向。”

目前,生物陶瓷在性能上还不能满足很多临床需求,比如材料的牢度、稳定性、力学强度和组织的匹配性等,这就要求科研人员更深入研究材料的生物活性的机理,找出它对干细胞调控以及对组织再生调控的原理,据此进一步设计合适的材料。

对于未来,何红兵有着清醒的认识和规划:“总体上我国生物医学材料,尤其是高端产品生产能力与国际先进水平还存在不小差距,希望我们能跨越式地建成新一代生物材料产业体系,摆脱落后局面。”

常江表示,生物材料本身就是一个最典型的交叉学科,如果纯靠做材料,实现上述目标就会很难,要想取得更大的突破,深层次的交叉合作才是关键。

特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。

“以前,做干细胞的人只是从生物学或医学角度考虑,对材料兴趣不大,而现在越来越多的人发现,材料对干细胞技术发展作用很大,这也使得他们有兴趣找材料界合作。”常江告诉记者,“干细胞放到体内去治疗的时候会遇到很多障碍,比如在体内有可能被免疫细胞吃掉了,或者环境改变之后,干细胞会死掉,或者无法停留在需要治疗的位置。那么,其中一个解决的方法就是找到一个好的材料,把细胞包裹在里面,再递送到体内,而这就是我们材料科学的优势。”

“比如,我们可以把材料做成膜,在上面种上细胞之后贴在身体需要的地方;或者可以做成水凝胶,把细胞包裹进去之后注射到需要治疗的地方并停留在那里。如果你的材料选得好,里面的细胞就会活得更好,具有更强的再生功能。”常江说。

近日,在由国际生物材料科学与工程学会联合会主办的“2018生物材料定义会”上,张兴栋建议的“组织诱导性生物材料”经大会投票通过后作为新定义列入了“生物材料定义”,这也是由我国科学家首次提出的生物材料定义。张兴栋对此解释说,材料植入人体后,可以刺激人体发生特定反应,调动人体的自我完善修复功能,再生人体组织或器官。

“有机结合各个学科的知识,才能碰撞出新的思想。”张兴栋表示,生物材料是一个多学科交叉的领域。随着科技的快速发展,全球生物材料领域已经发生了翻天覆地的变化,新材料、新技术和新领域大量涌现,萌生的新领域需要规范化和制定新的定义,才能使生物材料科学与产业正常发展。

《中国科学报》 (2018-10-11 第6版 前沿)

发表评论

电子邮件地址不会被公开。 必填项已用*标注